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1. Let (xn) be sequence of real numbers.
(a) Show that (xn) converges imply (xn) is bounded
(b) Let x ∈ R. Show that xn → x iff lim inf xn = x = lim supxn.

Solution: (a) Let xn → x then for a ε > 0 there is a M such that x− ε < xn < x+ ε ∀ n > M .
Set L = max1≤k≤M |xk|. So we get |xn| ≤ max{L, |x− ε|, |x+ ε|} ∀ n ≥ 1.

(b) We have lim inf xn = supn yn = limn→∞ yn, yn = infk≥n xk and yn ≤ yn+1. Similarly
lim supxn = infn zn = limn→∞ zn, zn = supk≥n xk and zn+1 ≤ zn. So we have yn ≤ xn ≤ zn. If
lim inf xn = x = lim supxn i.e lim yn = lim zn = x then by sandwich theorem we have limxn = x.
Now assume xn → x then for each ε > 0 there exist M such that x − ε < xn < x + ε ∀ n > M .
Then from the definition of yn and zn we have x − ε < yn ≤ zn < x + ε ∀ n > M . So we get
lim inf xn = lim yn = x = lim zn = lim supxn. �

2. (a) Say true or false: every bounded sequence (xn) has a subsequence (xnk
) such that xnk

→
lim supxn ∈ R.
(b) Prove that every bounded sequence has a convergent subsequence.
(c) Suppose (an) and (bn) are bounded sequences in R. Then prove that (an + bn) is a bounded
sequence and lim sup(an + bn) ≤ lim sup an + lim sup bn .

Solution (a) True. Since lim supxn is the supremum of all limits point of (xn).
(b) Bolzano-Weierstrass theorem.
(c) Since (an) and (bn) are bounded we have |an| ≤ M1 and |bn| ≤ M2 ∀ n. Then we have
|an + bn| ≤ |an|+ |bn| ≤M1 +M2 ∀ n. So (an + bn) is bounded.
We have aj + bj ≤ supk≥n an + supk≥n bn ∀ j ≥ n ⇒ supk≥n(an + bn) ≤ supk≥n an + supk≥n bn.
Now we get limn→∞ supk≥n(an + bn) ≤ limn→∞ supk≥n an + limn→∞ supk≥n bn. Which will imply
lim sup(an + bn) ≤ lim sup an + lim sup bn. �

3. (a) If |x| < 1 and q ∈ R show that
∑
nqxn converges.

(b) Prove that n
1
n → 1 and use it to show that

∑
an is converges where an = n

1
n − 1.

Solution (a) We have lim
n→∞

|nqxn| 1n = |x| < 1 here we use that n
1
n → 1. Then by root test we have

the convergence of
∑
nqxn.

(b) We have n
1
n ≥ 1, n ≥ 2. Let xn = n

1
n − 1 ≥ 0 then (1 + xn)n = n. Now binomial expansion

will give n = 1 + nxn + n(n−1)
2 x2n + · · ·+ xnn ⇒ 1 + n(n−1)

2 x2n < n so we get n(n−1)
2 x2n < n− 1 < n

⇒ xn <
√

1
n−1 . So we get limxn = 0 i.e n

1
n → 1.

Now lim |an|
1
n = lim(n

1
n − 1) = 0 < 1, so by root test we get the convergence of

∑
an. �

4. Let
∑
an converges absolutely. Then show that

∑
an converges and every rearrangement

∑
akn also

converges to
∑
an. Show also that any rearrangement

∑
akn converges absolutely and

∑
|an| =∑

|akn |.

Solution See the Theorem 3.5F of Methods of Real Analysis by Richard R. Goldberg. �
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5. (a) Let A be a non-empty subset of real line R and define f : R −→ R by f(x) = infa∈A |x − a|,
x ∈ R. Show that f is continuous on R.
(b) Let f be a continuous function on R and x ∈ R. Suppose f(x) 6= 0, Show that there are δ, η > 0
such that |f(r)| > η for all r ∈ (x− δ, x+ δ).
(c) Let f and g be a continuous function on R and x ∈ R. Suppose f(x) 6= g(x) show that there is
a δ > 0 such that f(r) 6= g(r) for all r ∈ (x− δ, x+ δ).

Solution (a) We have |x− a| ≤ |x− y|+ |y − a| x, y ∈ R, a ∈ A. We get
|x−a| ≤ |x−y|+ |y−a| ≤ |x−y|+ |y−a| i.e infa∈A |x−a| ≤ |x−y|+ |y−a| ⇒ |y−a| ≥ f(x)−|x−y|
whcih will give f(y) ≥ f(x)−|x−y| i.e f(x)−f(y) ≤ |x−y|, similary we can get f(y)−f(x) ≤ |x−y|.
Now we have |f(x)− f(y)| ≤ |x− y| which will give the continuity of f .
(b) Let assume f(x) > 0, since f is continuous at x then for each ε > 0 there exist a δ > 0 such

that |f(r)− f(x)| < ε ∀ r ∈ (x− δ, x+ δ). Chose ε = f(x)
2 then we have f(r) > f(x)− f(x)

2 = f(x)
2

for all r ∈ (x − δ, x + δ). So if take η = f(x)
2 we are done. If f(x) < 0 the do the same thing as

above with the function h := −f .
(c) Define h := f − g with h(x) 6= 0 then by above problem we get there are η and δ such that
|h(r)| > η > 0 for all r ∈ (x− δ, x+ δ), i.e f(r) 6= g(r) (i.e h(r) 6= 0) for all r ∈ (x− δ, x+ δ). �

6. (a) If f : [0, 1] −→ [0, 1] is a continuous function. Then prove that there is x ∈ [0, 1] such that
f(x) = x.
(b)If f : [0, 1] −→ [0, 2] is a continuous function. Then prove that there is x ∈ [0, 1] such that
f(x) = 2− 2x

Solution (a) If f(0) = 0 of f(1) = 1 then we are done. Let assume f(0) > 0 and f(1) < 1. Now
consider g(x) = f(x)−x then g(0) > 0 and g(1) = f(1)−1 < 0 then by intermediate value theorem
there is a x in [0, 1] such that g(x) = 0 i.e f(x) = x.
(b) If f(0) = 2 of f(1) = 0 then we are done. Le assume f(0) < 2 and f(1) > 0. Let g(x) =
f(x)− 2 + 2x then g(0) = f(0)− 2 < 0 and g(1) = f(1) > 0, now intermediate value theorem will
give the result. �

7. Let f : I −→ R be an uniformly continuous function and (xn) be a sequence in I.
(a) If (xn) is cauchy show that (f(xn)) is a cauchy.
(b) If (xn) and (yn) are sequence in I such that xn → x, yn → x for some x ∈ R then show that
lim f(xn) = lim f(yn).

Solution (a) Since {xn}n is a cauchy sequence, we have for each δ > 0 there is M ∈ N (M depends
on δ) such that |xn − xm| < δ, ∀ n,m > M . Now uniform continuity of f will give

|f(xn)− f(xm)| < ε ∀ n,m > M.

So {f(xn)}n is a cauchy sequence.
(b) Since xn → x, yn → x for some x ∈ R so both (xn) and (yn) both are cauchy therefore (f(xn))
and (f(yn)) are also cauchy. So both limit lim f(xn) and lim f(yn) exist.
Now for any δ > 0 we can find M ∈ N such that |xn − x| < δ

2 and |yn − x| <
δ
2 ∀ n ≥ M . Now

uniform continuity of f give , for any ε > 0 we have for n > M

|f(xn)− f(yn)| < ε as |xn − yn| ≤ |xn − x|+ |x− yn| < δ.

The above will give lim f(xn) = lim f(yn). �
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