- 1. Let (x_n) be sequence of real numbers.
 - (a) Show that (x_n) converges imply (x_n) is bounded
 - (b) Let $x \in \mathbb{R}$. Show that $x_n \to x$ iff $\liminf x_n = x = \limsup x_n$.

Solution: (a) Let $x_n \to x$ then for a $\epsilon > 0$ there is a M such that $x - \epsilon < x_n < x + \epsilon \quad \forall \quad n > M$. Set $L = \max_{1 \le k \le M} |x_k|$. So we get $|x_n| \le \max\{L, |x - \epsilon|, |x + \epsilon|\} \quad \forall n \ge 1$.

(b) We have $\liminf x_n = \sup_n y_n = \lim_{n \to \infty} y_n$, $y_n = \inf_{k \ge n} x_k$ and $y_n \le y_{n+1}$. Similarly $\limsup_{n \ge n} x_n = \inf_n z_n = \lim_{n \to \infty} z_n$, $z_n = \sup_{k \ge n} x_k$ and $z_{n+1} \le z_n$. So we have $y_n \le x_n \le z_n$. If $\lim_{n \ge n} x_n = x = \limsup_{n \ge n} x_n$ i.e $\lim_{n \ge n} y_n = \lim_{n \ge n} z_n = x$ then by sandwich theorem we have $\lim_{n \ge n} x_n = x$. Now assume $x_n \to x$ then for each $\epsilon > 0$ there exist M such that $x - \epsilon < x_n < x + \epsilon \quad \forall n > M$. Then from the definition of y_n and z_n we have $x - \epsilon < y_n \le z_n < x + \epsilon \quad \forall n > M$. So we get $\lim_{n \ge n} x_n = \lim_{n \ge n} y_n = x = \lim_{n \ge n} z_n$.

- 2. (a) Say true or false: every bounded sequence (x_n) has a subsequence (x_{n_k}) such that $x_{n_k} \to \limsup x_n \in \mathbb{R}$.
 - (b) Prove that every bounded sequence has a convergent subsequence.

(c) Suppose (a_n) and (b_n) are bounded sequences in \mathbb{R} . Then prove that $(a_n + b_n)$ is a bounded sequence and $\limsup(a_n + b_n) \leq \limsup a_n + \limsup b_n$.

Solution (a) True. Since $\limsup x_n$ is the supremum of all limits point of (x_n) .

(b) Bolzano-Weierstrass theorem.

(c) Since (a_n) and (b_n) are bounded we have $|a_n| \leq M_1$ and $|b_n| \leq M_2 \quad \forall n$. Then we have $|a_n + b_n| \leq |a_n| + |b_n| \leq M_1 + M_2 \quad \forall n$. So $(a_n + b_n)$ is bounded.

We have $a_j + b_j \leq \sup_{k \geq n} a_n + \sup_{k \geq n} b_n \quad \forall j \geq n \Rightarrow \sup_{k \geq n} (a_n + b_n) \leq \sup_{k \geq n} a_n + \sup_{k \geq n} b_n$. Now we get $\lim_{n \to \infty} \sup_{k \geq n} (a_n + b_n) \leq \lim_{n \to \infty} \sup_{k \geq n} a_n + \lim_{n \to \infty} \sup_{k \geq n} b_n$. Which will imply $\limsup_{k \geq n} (a_n + b_n) \leq \limsup_{k \geq n} a_n + \limsup_{k \geq n} b_n$.

3. (a) If |x| < 1 and $q \in \mathbb{R}$ show that $\sum n^q x^n$ converges. (b) Prove that $n^{\frac{1}{n}} \to 1$ and use it to show that $\sum a_n$ is converges where $a_n = n^{\frac{1}{n}} - 1$.

Solution (a) We have $\lim_{n \to \infty} |n^q x^n|^{\frac{1}{n}} = |x| < 1$ here we use that $n^{\frac{1}{n}} \to 1$. Then by root test we have the convergence of $\sum n^{q} x^n$.

(b) We have $n^{\frac{1}{n}} \ge 1$, $n \ge 2$. Let $x_n = n^{\frac{1}{n}} - 1 \ge 0$ then $(1 + x_n)^n = n$. Now binomial expansion will give $n = 1 + nx_n + \frac{n(n-1)}{2}x_n^2 + \dots + x_n^n \Rightarrow 1 + \frac{n(n-1)}{2}x_n^2 < n$ so we get $\frac{n(n-1)}{2}x_n^2 < n - 1 < n$ $\Rightarrow x_n < \sqrt{\frac{1}{n-1}}$. So we get $\lim x_n = 0$ *i.e* $n^{\frac{1}{n}} \to 1$.

Now $\lim |a_n|^{\frac{1}{n}} = \lim (n^{\frac{1}{n}} - 1) = 0 < 1$, so by root test we get the convergence of $\sum a_n$.

4. Let $\sum a_n$ converges absolutely. Then show that $\sum a_n$ converges and every rearrangement $\sum a_{k_n}$ also converges to $\sum a_n$. Show also that any rearrangement $\sum a_{k_n}$ converges absolutely and $\sum |a_n| = \sum |a_{k_n}|$.

Solution See the Theorem 3.5F of Methods of Real Analysis by Richard R. Goldberg.

5. (a) Let A be a non-empty subset of real line R and define f : R → R by f(x) = inf_{a∈A} |x - a|, x ∈ R. Show that f is continuous on R.
(b) Let f be a continuous function on R and x ∈ R. Suppose f(x) ≠ 0, Show that there are δ, η > 0 such that |f(r)| > η for all r ∈ (x - δ, x + δ).
(c) Let f and g be a continuous function on R and x ∈ R. Suppose f(x) ≠ g(x) show that there is a δ > 0 such that f(r) ≠ g(r) for all r ∈ (x - δ, x + δ).

Solution (a) We have $|x-a| \leq |x-y| + |y-a|$ $x, y \in \mathbb{R}, a \in A$. We get $|x-a| \leq |x-y| + |y-a| \leq |x-y| + |y-a|$ i.e $\inf_{a \in A} |x-a| \leq |x-y| + |y-a| \Rightarrow |y-a| \geq f(x) - |x-y|$ which will give $f(y) \geq f(x) - |x-y|$ i.e $f(x) - f(y) \leq |x-y|$, similarly we can get $f(y) - f(x) \leq |x-y|$. Now we have $|f(x) - f(y)| \leq |x-y|$ which will give the continuity of f.

(b) Let assume f(x) > 0, since f is continuous at x then for each $\epsilon > 0$ there exist a $\delta > 0$ such that $|f(r) - f(x)| < \epsilon \quad \forall \ r \in (x - \delta, x + \delta)$. Chose $\epsilon = \frac{f(x)}{2}$ then we have $f(r) > f(x) - \frac{f(x)}{2} = \frac{f(x)}{2}$ for all $r \in (x - \delta, x + \delta)$. So if take $\eta = \frac{f(x)}{2}$ we are done. If f(x) < 0 the do the same thing as above with the function h := -f.

(c) Define h := f - g with $h(x) \neq 0$ then by above problem we get there are η and δ such that $|h(r)| > \eta > 0$ for all $r \in (x - \delta, x + \delta)$, i.e $f(r) \neq g(r)$ (i.e $h(r) \neq 0$) for all $r \in (x - \delta, x + \delta)$. \Box

6. (a) If $f : [0,1] \longrightarrow [0,1]$ is a continuous function. Then prove that there is $x \in [0,1]$ such that f(x) = x. (b) If $f : [0,1] \longrightarrow [0,2]$ is a continuous function. Then prove that there is $x \in [0,1]$ such that

(b) If $f:[0,1] \longrightarrow [0,2]$ is a continuous function. Then prove that there is $x \in [0,1]$ such that f(x) = 2 - 2x

Solution (a) If f(0) = 0 of f(1) = 1 then we are done. Let assume f(0) > 0 and f(1) < 1. Now consider g(x) = f(x) - x then g(0) > 0 and g(1) = f(1) - 1 < 0 then by intermediate value theorem there is a x in [0, 1] such that g(x) = 0 i.e f(x) = x.

(b) If f(0) = 2 of f(1) = 0 then we are done. Le assume f(0) < 2 and f(1) > 0. Let g(x) = f(x) - 2 + 2x then g(0) = f(0) - 2 < 0 and g(1) = f(1) > 0, now intermediate value theorem will give the result.

7. Let $f: I \longrightarrow \mathbb{R}$ be an uniformly continuous function and (x_n) be a sequence in I.

(a) If (x_n) is cauchy show that $(f(x_n))$ is a cauchy.

(b) If (x_n) and (y_n) are sequence in I such that $x_n \to x$, $y_n \to x$ for some $x \in \mathbb{R}$ then show that $\lim f(x_n) = \lim f(y_n)$.

Solution (a) Since $\{x_n\}_n$ is a cauchy sequence, we have for each $\delta > 0$ there is $M \in \mathbb{N}$ (M depends on δ) such that $|x_n - x_m| < \delta$, $\forall n, m > M$. Now uniform continuity of f will give

$$|f(x_n) - f(x_m)| < \epsilon \quad \forall \ n, m > M.$$

So $\{f(x_n)\}_n$ is a cauchy sequence.

(b) Since $x_n \to x$, $y_n \to x$ for some $x \in \mathbb{R}$ so both (x_n) and (y_n) both are cauchy therefore $(f(x_n))$ and $(f(y_n))$ are also cauchy. So both limit $\lim f(x_n)$ and $\lim f(y_n)$ exist.

Now for any $\delta > 0$ we can find $M \in \mathbb{N}$ such that $|x_n - x| < \frac{\delta}{2}$ and $|y_n - x| < \frac{\delta}{2} \forall n \ge M$. Now uniform continuity of f give, for any $\epsilon > 0$ we have for n > M

$$|f(x_n) - f(y_n)| < \epsilon \ as \ |x_n - y_n| \le |x_n - x| + |x - y_n| < \delta.$$

The above will give $\lim f(x_n) = \lim f(y_n)$.