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1. Let (z,,) be sequence of real numbers.
(a) Show that (x,) converges imply (x,) is bounded
(b) Let x € R. Show that x,, — x iff liminf z,, = x = lim sup z,.

Solution: (a) Let x,, — x then for a ¢ > 0 there is a M such that t —e <z, <z +¢€ ¥V n> M.
Set L = maxi<k<m |zk|. So we get |x,| <max{L, |z —¢|, |zt +¢} Vn>1.

(b) We have liminf &, = sup,, yp, = limy—y00 Yn, Yn = infr>, zx and y, < yYp41. Similarly

limsup z,, = inf, 2z, = liMy 00 2n, 2Zn = SUPE>, Tk a0d 241 < 2,. S0 we have y, < z, < z,. If
liminf z,, = z = limsup x,, i.e limy, = limz, = 2 then by sandwich theorem we have lim z,, = x.
Now assume z,, — x then for each € > 0 there exist M such that z —e <z, <x+¢ Vn> M.
Then from the definition of y,, and z, we have x —e < y, < z, <z +e¢ Vn > M. So we get
liminf z,, =limy, =« = lim 2z, = limsup z,,. O

2. (a) Say true or false: every bounded sequence (x,) has a subsequence (xn,) such that x,, —
limsupz, € R.
(b) Prove that every bounded sequence has a convergent subsequence.
(¢) Suppose (a,) and (by,) are bounded sequences in R. Then prove that (a, + b,) is a bounded
sequence and limsup(a, + b,) < limsupa, + limsupb,, .

Solution (a) True. Since limsup z,, is the supremum of all limits point of (z,,).

(b) Bolzano-Weierstrass theorem.

(c) Since (a,) and (b,) are bounded we have |a,| < My and |b,| < My V n. Then we have
lan, + bn| < lan| + [bn] < M1+ My ¥V n. So (a, + by,) is bounded.

We have a; +b; < supys,, @n + Supgs, by ¥V j > n = supgs,(an + by) < supgs,, @n + Supgs,, by.
Now we get lim,, . sup;>n(an + bnfg lim;, 00 SUPL >y, On + limy, o0 SUDPg>n b,,. Which will imply
lim sup(a, + b,) < lim suﬁan + lim sup b,,. a - O

3. (a) If |z| <1 and q¢ € R show that Y niz™ converges.
(b) Prove that nw — 1 and use it to show that > ay is converges where a, = nw — 1.

Solution (a) We have lim \n%"ﬁ = |z| < 1 here we use that n# — 1. Then by root test we have
n—oo

the convergence of > nix".
(b) We have nw > 1, n>2. Let =, = nw —1 >0 then (1 + x,)™ = n. Now binomial expansion

Willgivenz1—|—nxn—|—"(nT_1)x%+~-~+xZ:>1+%x%<nsoweget %x%<n—l<n

=z, < 1/ﬁ. So we get limx, =0 i.e nw — 1.

Now lim |a,|# = lim(n= — 1) = 0 < 1, so by root test we get the convergence of 3" a,,. O

4. Let >’ a, converges absolutely. Then show that >_ a,, converges and every rearrangement »  ay, also
converges to Y an,. Show also that any rearrangement Y ax, converges absolutely and Y |a,| =

> lak, |-
Solution See the Theorem 3.5F of Methods of Real Analysis by Richard R. Goldberg. (]



5. (a) Let A be a non-empty subset of real line R and define f : R — R by f(x) = infoca |z — a,
x € R. Show that f is continuous on R.
(b) Let f be a continuous function on R and x € R. Suppose f(x) # 0, Show that there are 6, n >0
such that | f(r)] > n for allr € (x — §,x +9).
(c) Let f and g be a continuous function on R and x € R. Suppose f(x) # g(x) show that there is
a 0 > 0 such that f(r) # g(r) for allr € (x — §,x + 9).

Solution (a) We have [z —a| < |z —y|+|y—a|] z, y€R, a € A. We get

[z—a| < |z—y[+|y—a| <|z—y[+|y—alieinfoeslz—al <|z—y|+ly—al = y—al > f(z)—|r—y]
wheih will give f(y) > f(z)—|z—y|ie f(z)—f(y) < |z—y|, similary we can get f(y)— f(x) < |z—y|.
Now we have |f(x) — f(y)| < |z — y| which will give the continuity of f.

(b) Let assume f(z) > 0, since f is continuous at x then for each € > 0 there exist a § > 0 such
that |f(r) — f(z)] <€ Vr e (r—06,x+0). Chose e = @ then we have f(r) > f(z) — @ = @
for all r € (z — 0,z + ¢). So if take n = @ we are done. If f(z) < 0 the do the same thing as
above with the function h := —f.

(c) Define h := f — g with h(xz) # 0 then by above problem we get there are 1 and § such that
|h(r)| >n >0 forall r € (x — §,z+9), i.e f(r) #g(r) (i.e h(r) #£0) for all r € (x — §, 2+ ). O

6. (a) If f :[0,1] — [0,1] is a continuous function. Then prove that there is x € [0,1] such that
fx) = .
(W)If f:10,1] — [0,2] is a continuous function. Then prove that there is x € [0,1] such that
flz)=2-2z

Solution (a) If f(0) = 0 of f(1) = 1 then we are done. Let assume f(0) > 0 and f(1) < 1. Now
consider g(z) = f(x) — then g(0) > 0 and g(1) = f(1) —1 < 0 then by intermediate value theorem
there is a z in [0, 1] such that g(z) = 0i.e f(x) = z.

(b) If f(0) = 2 of f(1) = 0 then we are done. Le assume f(0) < 2 and f(1) > 0. Let g(x) =
f(z) — 2+ 2z then g(0) = f(0) — 2 < 0 and g(1) = f(1) > 0, now intermediate value theorem will
give the result. O

7. Let f : I — R be an uniformly continuous function and (x,) be a sequence in I.
(a) If (xy,) is cauchy show that (f(zy)) is a cauchy.
(b) If (z,) and (yn) are sequence in I such that x, — x, y, — = for some x € R then show that

Solution (a) Since {z, }, is a cauchy sequence, we have for each § > 0 there is M € N (M depends
on ¢) such that |z, — x| <0, V n,m > M. Now uniform continuity of f will give

[f(xn) — f(zm)| <€ ¥Vn,m> M.

So {f(zn)}n is a cauchy sequence.

(b) Since z,, — z, y, — x for some z € R so both (z,,) and (y,) both are cauchy therefore (f(x,))
and (f(yn)) are also cauchy. So both limit lim f(z,) and lim f(y,) exist.

Now for any § > 0 we can find M € N such that |z, — 2| < § and |y, — 2| < § ¥V n > M. Now
uniform continuity of f give , for any € > 0 we have for n > M

‘f('rn) _f(yn)| <€ as |33n _yn| < |In _x‘ + |x_yn| <.

The above will give lim f(z,,) = lim f(yy). O



